If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-16z+48=0
a = 1; b = -16; c = +48;
Δ = b2-4ac
Δ = -162-4·1·48
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8}{2*1}=\frac{8}{2} =4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8}{2*1}=\frac{24}{2} =12 $
| 1+x/2=-17 | | 2(m+9.25)=2.42 | | –k2+2k−1=0 | | 5n+4=-91 | | -7=3x-15-7x* | | 12.5x+13.6=42 | | 10x+2=5x+16 | | X2+6x-180=0 | | c+-860=-288 | | 2x+4=−4x+5 | | 5(2x-8)=120 | | 5(x+13)=8x-25 | | 2+p5=-1 | | 2(6x-5)=26 | | 11=2t+6-5 | | 30f=300 | | 19+6x=38 | | 4-k=-9 | | 5x+2=111 | | 6p=6p+9 | | p-59=9 | | 150=p+893 | | 2x=-4(1/4-3/4x)+4 | | 1+p3=6 | | h+35=75 | | -9/x=-7 | | -7+x/3=-1 | | 3(i+1)+I+2=2(2i+1)+3 | | n2-4=-7 | | 21=f-13 | | 121=c² | | n(n+2)=240 |